Trailer Systems (Electrical)

Presented At The 2009 2010 Restoration Rally - Albuquerque, NM

Jim Cooper June, 2010

Electric System Characteristics

	Propane	Water	Electric
Source	Dealer	Тар	AC Receptacle
Storage	Tank (100 psi)	Tank	Battery (+ 12 VDC)
Distribution	Cu Pipe (½ psi)	Cu or Pex Pipe (50 psi)	Cu or Al Wire
Use	Heat	Drink, Wash, Flush	Heat, Light, Rotation
Waste	Heat & Exhaust	Gray & Black water	Heat

Jim Cooper June, 2010

Electrical Safety

Shock

12 volts DC not dangerous

120 volts AC is dangerous

- Hot (black) and Neutral (white) must not be reversed.
- Neutral and Common (copper or green) are not connected in the trailer.

Jim Cooper June, 2010

Electrical System Diagram

Do The Math

Lights, heaters, and motors present **Resistance** to the <u>Current</u> flowing through them, which is forced by the Voltage across them. As a result, they consume **Power**.

Jim Cooper June, 2010

The Big Picture

Your RV runs on 12 volts DC supplied by the battery. 120 Volts AC is there to charge the battery, power big appliances, and provide receptacle power.

Batteries are charged by 120 VAC Converters and Solar Panels.

Sometimes Inverters change 12 VDC into 120 VAC to provide receptacle power when not externally available.

Jim Cooper June, 2010

Batteries

Capacity

٠

•

•

- Amp Hours (100 AH)
- Low Temp reduces AH
- Charge
 - Full 12.6 12.8 VDC
 - 50% 12.2 VDC
 - 0% 10.5 VDC
- Charging
 - "Bulk" (varying volt), Max
 Current
 - "Absorption" (14.2 15.5 VDC), Limited current
 - "Float" (12.8 13.2 VDC),
 Trickle current
- Jim Cooper June, 2010

- Load draws current (amps) over time
 - amps * hours = AH
- Load in Watts
 - Watts = Volts * Amps
 - 100W light on 120VAC draws 0.8 amps, but running on 12VDC it draws 8 amps.
 - 25w is 25w/12vdc = 2a
 - 100w is 100w/12vdc = 8.3a

Inverter Characteristics

Square Wave

٠

- Cheep
- High standby current, low surge Current
- Not good for electronics
- Modified Square Wave
 - Inexpensive
 - Peak voltage varies with battery voltage. Noise and harmonics.
 - Poor electronics performance
- Sign Wave
 - Expensive
 - Perfect output
 - Perfect electronics performance

Jim Cooper June, 2010

Inverter (12VDC \rightarrow 120VAC) Wave Forms

Jim Cooper June, 2010

Electrical Big Deals

- Source Wiring
 - Reversed Hot & Neutral
 - No Ground
- Poor Connections
 - Loose Wires
 - Aluminum Wire Oxidation
- Drain on Battery
 - -Amps = Watts / Volts
 - Battery stores Amp Hours of current

Jim Cooper June, 2010

Electrical Troubleshooting

- 120 VAC
 - 120 VAC Monitor
 - -Wiring Tester
 - -Volt-Ohm Meter
 - -120 VAC Detector
- +12 VDC
 - 12 VDC Monitor
 - -Volt-Ohm Meter
 - -12 VDC Detector

Jim Cooper June, 2010

Gadgets, 120 VAC Monitor

Jim Cooper June, 2010

Gadgets, 12 VDC Monitor

Jim Cooper June, 2010

Gadgets, 120 VAC

Jim Cooper June, 2010

Gadgets, Multimeter

Jim Cooper June, 2010

Brake & Light Wiring

Jim Cooper June, 2010

7–Way Connector

- Big Deals
 - Poor Contacts
 - Poor Ground
 - Open Fuses
- Troubleshooting
 - -Voltmeter or 12 VDC detector
 - Fused Short

Jim Cooper June, 2010

Gadgets, 7- Wire

Jim Cooper June, 2010